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Unitary Operator and Zero-Point Fluctuation
Properties of a Polariton System
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In a model polariton system, we find a unitary operator which transforms
canonically from the uncoupled states to the coupled states of the phonon±photon
system. We investigate the ground-state properties of the system and show that
when the polariton system is in its lowest energy state (the vacuum state), which
means that no radiation occurs, the phonon and photon subsystems can exhibit
nonclassical behavior.

The study of the behavior of coupled phonon ±photon systems has long
been an active research area in condensed matter physics because of its

significance in determining the phonon properties. Recently, efforts have

been made to study the nonclassical nature of phonons using the ideas of

quantum optics. For example, squeezed phonon states have been studied

theoretically (Hu and Nori, 1996, 1997) and experimentally (Garret et al.,
1997). They are also interesting in connection with a model solid-state system

or a model polariton system (Ghoshal and Chatterjee, 1995, 1996). A polariton

is a phonon ±photon complex which can be formed when light falls on a

solid material and interacts with the vibrating lattice. For the model polariton

system, Ghoshal and Chatterjee (1996) have given a transformation relation

between the phonon ±photon operators and that of the polariton operators to
diagonalize the Hamiltonian of the system. In this paper, we show that the

Ghoshal±Chatterjee transformation can be represented as an explicitly unitary

operator form. Thus, a relation between the coupled and uncoupled states of

the phonon ±photon system is found. We demonstrate that a new ground state

of the polariton system proposed by Wang et al. (1997) is just the polariton
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vacuum state. We also investigate the zero-point fluctuation properties of the

polariton system.

We first briefly describe the Ghoshal±Chatterjee model (1996) and its
main results. The polariton system involve one mode of the photon field

interacting with a single optical phonon mode. The polariton model can be

described by the Hamiltonian

H 5 v aa
² a 1 v bb

² b 1 k(a ² b ² 1 ab 1 a ² b 1 ab ² ) (1)

where a(a ² ) is the annihilation (creation) operator for the phonon field with

frequency v a , b(b ² ) is the annihilation (creation) operator of the photon field
with frequency v a , and k is the phonon ±photon coupling constant. Using

the transformations

a 5 A1 a 1 A2 a ² 1 B1 b 1 B2 b ² (2)

b 5 B3 a 1 B4 a ² 1 A3 b 1 A4 b ² (3)

and choosing suitable parameters

A1 5
A

2 1 l 1 1
1

l 1 2 , A2 5
A

2 1 l 1 2
1

l 1 2 (4)

A3 5 2
A

2 1 l 2 1
1

l 2 2 , A4 5 2
A

2 1 l 2 2
1

l 2 2 (5)

B1 5
B

2 1 f l 2 1
1

f l 2 2 , B2 5
B

2 1 f l 3 2
1

f l 2 2 (6)

B3 5
B

2 1 l 1

f
1

f

l 1 2 , B4 5
B

2 1 l 1

f
2

f

l 1 2 (7)

A 5 1 ! 1 1 g2 1 g

2 ! 1 1 g2 2
1/2

, B 5 1 ! 1 1 g2 2 g

2 ! 1 1 g2 2
1/2

(8)

l 1 5 f 1 A2 2 B2

A2f 4 2 B2 2
1/4

, l 2 5 1 A2 2 B2

A2 2 B2f 4 2
1/4

(9)

f 5 ! v a

v b

, g 5
( v 2

a 2 v 2
b)

4k ! v a v b

(10)

we can diagonalize the Hamiltonian (1) as

H 5 E a a ² a 1 E b b ² b 1 E0 (11)

where a , b are new Bose operators in the polariton system. E0 is the ground-

state energy of the system and is given by
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E0 5
1

2
(Ea 1 Eb 2 v a 2 v b) (12)

Ea 5 [( v 2
a A2 1 v 2

bB
2) 1 4k ! v a v bAB]1/2 (13)

Eb 5 [( v 2
b A2 1 v 2

aB
2) 2 4k ! v a v bAB]1/2 (14)

The transformation (2), (3) is canonical since it leaves the commutator invari-

ant, [ a , a ² ] 5 1, [ b , b ² ] 5 1, [ a , b ] 5 0. A theorem of von Neumann (1931)

asserts that every canonical transformation can be represented as a unitary
transformation. Thus, we can perform

a 5 UaU 2 1, b 5 UbU 2 1 (15)

where U is a unitary operator and leads to the transformation properties of

(2), (3). Our purpose is to look for the form of the unitary operator so as

to build a relation between the uncoupled state and the coupled one. The

Hamiltonian (11) can be rewritten as

H 5 U H0U
2 1 (16)

where

H0 5 E a a ² a 1 E b b ² b 1 E0 (17)

and the operators a , b and a, b satisfy the following eigenvalue equations:

a ² a ) n1 & a 5 n1 ) n1 & a , b ² b ) n2 & b 5 n2 ) n2 & b

a ² a ) n1 & a 5 n1 ) n1 & a , b ² b ) n2 & b 5 n2 ) n2 & b

n1, n2 5 0, 1, 2, . . . (18)

The diagonalized Hamiltonian (11) means that one has ª dressedº the phonons,

and the indices a and b specify the two branches of energy spectrum. Let

the two-mode states ) n1n2 & a b denote the eigenstates of H and ) n1n2 & ab the

eigenstates of H0. It is easy to see that U ) n1n2 & ab are the eigenstates of H.

Thus, we find the following transformation:

) n1n2 & a b 5 U ) n1n2 & ab (19)

Once the unitary operator is obtained, the connection between the uncoupled
state and the coupled one of the system can be known.

We now derive the explicit form of the unitary operator. Let us introduce

the coordinate operators in the form

Qa 5
1

! 2 v a

(a 1 a ² ), Qb 5
1

! 2 v b

(b 1 b ² ) (20)

The corresponding coordinate eigenstates are given by
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) qa & 5 1 v a

p 2
1/4

exp 1 2
v a

2
q2

a 1 ! 2 v bqaa
² 2

1

2
a ² 2 2 ) 0 & a (21)

) qb & 5 1 v 1

p 2
1/4

exp 1 2
v b

2
q2

b 1 ! 2 v bqbb
² 2

1

2
b ² 2 2 ) 0 & b (22)

From (2)±(7) and (15), we have

a 1 a ² 5 U[A l 1(a 1 a ² ) 1 Bf l 2(b 1 b ² )]U 2 1 (23)

b 1 b ² 5 U F B l 2

f
(a 1 a ² ) 2 A l 2(b 1 b ² )G U 2 1 (24)

Thus we obtain

1 Qa

Qb 2 5 uU 1 Qa

Qb 2 U 2 1 (25)

where u is a two-dimensional matrix given by

u 5 1 A l 1 B l 2

B l 1 2 A l 2 2 (26)

Similar to Fan et al., (1987) we introduce the following integral operator:

U 5 ) det u ) 1/2 # #
`

2 `

dqa dqb Z u 1 qa

qb 2 L K 1 qa

qb 2 Z (27)

where

Z 1 qa

qb 2 L [ ) qa & ^ ) qb & (28)

is the two-mode coordinate eigenstate and the operators Qa, Qb satisfy the

eigenstate equations

1 Qa

Qb 2 Z 1 qa

qb 2 L 5 1 qa

qb 2 Z qa

qb L (29)

It is easy to check that

UU ² 5 ) det u ) # #
`

2 `

dqa dqb # #
`

2 `

dq8a dq8b

3 Z u 1 qa

qb 2 L K 1 qa

qb 2 Z 1 q8a

q8b 2 L K u 1 q8a

q8b 2 Z
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5 U ² U 5 1 (30)

Thus, one see that U is unitary. Furthermore, since

K u 1 qa

qb 2 Z 1 Qa

Qb 2 5 K u 1 qa

qb 2 Z u 1 qa

qb 2 (31)

we have

1 Qa

Qb 2 U 2 1 5 ) det u ) 1/2 # # dqa dqb Z 1 qa

qb 2 L K u 1 qa

qb 2 Z 1 qa

qb 2
5 U 2 1u 2 1 1 Qa

Qb 2 (32)

As a result, we obtain

U 1 Qa

Qb 2 U 2 1 5 u 2 1 1 Qa

Qb 2 (33)

and its inverse transformation

U 2 1 1 Qa

Qb 2 U 5 u 1 Qa

Qb 2 (34)

Thus U is indeed the operator leading to the transformation (25). From (21),

(22), together with ) 00 & ^ 00 ) 5 :exp( 2 a ² a 2 b ² b): (Fan et al., 1987), we can

express (27) as

U 5 l 1 l 2
! v a v b

p # #
`

2 `

dqa dqb :W: (35)

where :: stands for normal product and the operator W is

W 5 exp F 2
v a

2
(A l 1qa 1 B l 2qb)

2 1 ! 2 v a(A l 1qa 1 B l 2qb)a
² 2

a ² 2

2

2
v b

2
(B l 1qa 2 A l 2qb)

2 1 ! 2 v b(B l 1qa 2 A l 2qb)b
² 2

b ² 2

2

2 a ² a 2 b ² b 2
v a

2
q2

a 1 ! 2 v aqaa 2
a2

2
2

v b

2
q2

b 1 ! 2 v bqbb 2
b2

2G
(36)

With the help of the integral results
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# #
`

2 `

dqa dqb exp( h 1q
2
a 1 h 2q

2
b 1 h 3qaqb 1 h 4qa 1 h 5qb)

5
2 p

! 4 h 1 h 2 2 h 2
3

exp 1 h 3 h 4 h 5 2 h 1 h 2
5 2 h 2 h 3

4

! 4 h 1 h 2 2 h 2
3 2 (37)

after doing some lengthy but straightforward algebra, we obtain a complicated

normal product form of the unitary operator:

U 5 2 l 1 l 2 ! v a v b

L
exp F 1L ( g 1a

² a ² 1 g 2b
² b ² 1 g 3a

² b ² )G
3 :exp F 1L ( g 4a

² b 1 g 5b
² a 1 g 6a

² a 1 g 7b
² b)G :

exp F 1L ( g 8aa 1 g 9bb 1 g 10 ab)G (38)

where

L 5 v a v b( l 2
1 l 2

2 1 A2 l 2
1 1 A2 l 2

2 1 1) 1 v 2
aB

2 l 2
2 1 v 2

bB
2 l 2

1 (39)

g 1 5 2
L

2
1 v a v b( l 2

1 l 2
2 1 A2 l 2

1) 1 v 2
aB

2 l 2
2 (40)

g 2 5 2
L

2
1 v a v b( l 2

1 l 2
2 1 A2 l 2

2) 1 v 2
bB

2 l 2
1 (41)

g 3 5 2AB ! v a v b( v b l 2
1 2 v a l 2

2) (42)

g 4 5 2 l 2B ! v a v b( v a 1 v b l 2
1) (43)

g 5 5 2 l 1B ! v a v b( v b 1 v a l 2
2) (44)

g 6 5 2 l 1A v a v b( l 2
2 1 1) 2 L (45)

g 7 5 2 2 l 2A v a v b( l 2
1 1 1) 2 L (46)

g 8 5 2
L

2
1 v a v b(A

2 l 2
2 1 1) 1 v 2

aB
2 l 2

2 (47)

g 9 5 2
L

2
1 v a v b(A

2 l 2
1 1 1) 1 v 2

bB
2 l 2

1 (48)

g 10 5 2 l 1 l 2AB ! v a v b( v a 2 v b) (49)

Operating with U on ) 00 & ab, we find a transformation from the phonon and

photon vacuum state to the polariton vacuum state, i.e.,
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) 00 & a b 5 2 l 1 l 2 ! v a v b

L
exp F 1L ( g 1a

² a ² 1 g 2b
² b ² 1 g 3a

² b ² )G ) 00 & ab (50)

Combining (8) and (9), noting

A2 1 B2 5 1,
A2

f 2 l 4
2

1
f 2B2

l 4
1

5
1

f 2 (51)

we can rewrite (39) as follows:

L 5 v a v b l 2
1 l 2

2 1 1

l 2
1

1
1

l 2
2 f 2 1 1 2

1

f 2 2 1 1 1
A2

l 2
2

1
f 2B2

l 2
1 2 (52)

Thus we can simplify g 1 in the form

g 1 5 2
E0L

2(E0 1 v a)
(53)

Similarly, we obtain

g 2 5 2
E0L

2(E0 1 v b)
, g 3 5

E0

k
L (54)

Recently, an interesting wave vector regarded as a new ground state of the

polariton system was constructed (Wang et al., 1997). We find that such a

state is the same as the state ) 00 & a b except for a normalized factor. Thus, in
our view, the new ground state is just the polariton vacuum state. In what

follows, we demonstrate that the polariton vacuum state is a squeezed state

for the phonon and photon subsystem. To see this, using the transformations

exp( 2 i u Jy) a ² exp(i u Jy) 5 a ² cos
u
2

1 b ² sin
u
2

(55)

exp( 2 i u Jy) b ² exp(i u Jy) 5 b ² cos
u
2

2 a ² sin
u
2

(56)

we can express ) 00 & a b as

) 00 & a b 5 2 l 1 l 2 ! v a v b

L
exp(i u Jy) ) 00 & a 8 b 8 (57)

where Jy 5 (ab ² 2 a ² b)i/2 and exp(i u Jy) is a rotation operator. The state

) 00 & a 8 b 8 5 exp( s 1a
² a ² 1 s 2b

² b ² ) ) 00 & ab (58)

is a direct product of the two single-mode squeezed vacuum states whose

parameters are given by



2602 Shao, Li, Zou, and Wang

tan u 5
g 3

g 2 2 g 1

(59)

s 1 5
1

2L
[ g 1(1 1 cos u ) 1 g 2(1 2 cos u ) 2 g 3 sin u ] (60)

s 2 5
1

2L
[ g 1(1 2 cos u ) 1 g 2(1 1 cos u ) 2 g 3 sin u ] (61)

To further show the properties of the rotated squeezed state, we now consider

the zero-point fluctuation of the coupled system and focus on how to squeeze
quantum noise in the two subsystems. Though the phonon and photon are

not separable in the ª dressedº phonon, we can still study the quantum noise

in the quadrature variables of the two subsystems. We know that an apparent

difference between quantum mechanics and classical mechanics is the pres-

ence of zero-point energy in a quantum mechanical system. This, of course,

is consistent with the uncertainty principle according to which the internal
coordinates of the system cannot all have their classical equilibrium values

when the system is in the ground state. Thus, zero-point energy is often

associated with the vacuum fluctuation of the field. To study the vacuum

fluctuation of the polariton system, one needs to analyze the quadrature

variables of the two subsystems. The quadratures are referred to the dimen-

sionless coordinate and momentum, and are denoted by

Xa 5
a 1 a ²

! 2
, Ya 5

a 2 a ²

! 2i
(62)

Xb 5
b 1 b ²

! 2
, Yb 5

b 2 b ²

! 2i
(63)

It is easy to see that the quadrature operators satisfy the commutation relation
[Xj , Yj] 5 i ( j 5 a, b), which implies the uncertainty relation ^ ( D Xj)

2 & ^ ( D Yj)
2 &

$ 1/4. As usual, the variance of the operator X is defined by the form ^ ( D X )2 &
5 ^ X 2 & 2 ^ X & 2. Due to the quantum coupling between the two subsystems, the

measurement of some attribute of the phonon (or photon) provides information

about the photon (or phonon). For a given state, the phonon subsystem
exhibits squeezing if ^ ( D Xa)

2 & , 1/2 (or ^ ( D Ya)
2 & , 1/2) and the photon

subsystem does if ^ ( D Xb)
2 & , 1/2 (or ^ ( D Yb)

2 & , 1/2). For the polariton

vacuum state, we obtain

^ ( D Xa)
2 & 5

1

2
[(A1 1 A2)

2 1 (B1 1 B2)
2] (64)

^ ( D Ya)
2 & 5

1

2
[(A1 2 A2)

2 1 (B1 2 B2)
2] (65)
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^ ( D Xb)
2 & 5

1

2
[(A3 1 A4)

2 1 (B3 1 B4)
2] (66)

^ ( D Yb)
2 & 5

1

2
[(A3 2 A4)

2 1 (B3 2 B4)
2] (67)

For simplicity, we consider the resonant case, i.e., v a 5 v b 5 1. The transfor-

mation coefficients are then given by

A1 5
1

2 ! 2
[(1 1 2k)1/4 1 (1 1 2k)

2 1/4],

A2 5
1

2 ! 2
[(1 1 2k)1/4 2 (1 1 2k) 2 1/4] (68)

B1 5
1

2 ! 2
[(1 2 2k)1/4 1 (1 2 2k) 2 1/4],

B2 5
1

2 ! 2
[(1 2 2k)1/4 2 (1 2 2k)

2 1/4] (69)

A3 5 2 B1, A4 5 2 B2, B3 5 A1, B4 5 A2 (70)

From (50), we obtain the transformation from the phonon and photon vacuum

state to the polariton vacuum state

) 00 & a b 5 N 1/2 exp 1 m
2

a ² 2 1
m
2

b ² 2 1 g a ² b ² 2 ) 00 & ab (71)

where

N 5
2 ! 1 2 4k2

(1 1 ! 1 2 2k)(1 1 ! 1 1 2k)
(72)

m 5 2
E0

E0 1 1
, g 5 2

E0

k
, E0 5 2 1 1

1

2
! 2 1 2(1 2 4k2)1/2

(73)

For such a state, the corresponding fluctuations are given by

^ ( D Xa)
2 & 5

1

4
( ! 1 1 2k 1 ! 1 2 2k) (74)

^ ( D Ya)
2 & 5

1

4 1 1

! 1 1 2k
1

1

! 1 2 2k 2 (75)
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^ ( D Xb)
2 & 5

1

4
( ! 1 1 2k 1 ! 1 2 2k) (76)

^ ( D Yb)
2 & 5

1

4 1 1

! 1 1 2k
1

1

! 1 2 2k 2 (77)

It can be seen from the above results that the quadrature variances ^ ( D Xa)
2 &

and ^ ( D Xb)
2 & are reduced below the value 1/2, which means that squeezing

always exists in the Xa and Xb directions for both the phonon and the photon

subsystems, which shows that the polariton ground state includes the single-

mode squeezed vacuum states of the two subsystems. The squeezing sensi-

tively depends on the coupling strength k. The bigger the coupling strength,

the better the squeezing.
In conclusion, we have investigated the Ghoshal±Chatterjee (1996)

transformation and shown that the transformation can be expressed as an

unitary operator form. A connection between the coupled and uncoupled

states of the phonon ±photon system is thus found. We also considered the

quantum noise-induced effect when the polariton system is in its lowest

energy state. Our results show that due to the interaction between the phonon
and photon field, the subsystems of both the phonon and photon field may

exhibit squeezing effects, while at the same time no radiation occurs because

the coupled system is in its ground state. We have a situation where the

whole system is in its lowest energy state while its two individual subsystems

may possess nonclassical behavior. In addition, the transformation also shows

clearly that a new ground state of the polariton system proposed by Wang
et al. (1997) is just the polariton vacuum state.
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